2-D models of layered protoplanetary discs: I. The ring instability
نویسنده
چکیده
In this work we use the radiation hydrodynamic code TRAMP to perform a twodimensional axially symmetric model of the layered disc. Using this model we follow the accumulation of mass in the dead zone due to the radially varying accretion rate. We found a new type of instability which causes the dead zone to split into rings. This ”ring instability” works due to the positive feedback between the thickness of the dead zone and the mass accumulation rate. We give an analytical description of this instability, taking into account non-zero thickness of the dead zone and deviations from the Keplerian rotational velocity. The analytical model agrees reasonably well with results of numerical simulations. Finally, we speculate about the possible role of the ring instability in protoplanetary discs and in the formation of planets.
منابع مشابه
Two - dimensional models of layered protoplanetary discs – II . The effect of a residual viscosity
Two-dimensional models of layered protoplanetary discs – II. The effect of a residual viscosity in the dead zone. ABSTRACT We study axisymmetric models of layered protoplanetary discs taking radiative transfer effects into account, and allowing for a residual viscosity in the dead zone. We also explore the effect of different viscosity prescriptions. In addition to the ring instability reported...
متن کاملEpisodic accretion in magnetically layered protoplanetary discs
We study protoplanetary disc evolution assuming that angular momentum transport is driven by gravitational instability at large radii, and magnetohydrodynamic (MHD) turbulence in the hot inner regions. At radii of the order of 1 AU such discs develop a magnetically layered structure, with accretion occurring in an ionized surface layer overlying quiescent gas that is too cool to sustain MHD tur...
متن کاملGlobal MHD simulations of stratified and turbulent protoplanetary discs. II. Dust settling
Aims. The aim of this paper is to study the vertical profile of small dust particles in protoplanetary discs in which angular momentum transport is due to MHD turbulence driven by the magnetorotational instability. We consider particle sizes that range from approximately 1 micron up to a few millimeters. Methods. We use a grid–based MHD code to perform global two-fluid simulations of turbulent ...
متن کاملTime - dependent models of the structure and stability of self - gravitating protoplanetary discs
Angular momentum transport within young massive protoplanetary discs may be dominated by self-gravity at radii where the disk is too weakly ionized to allow the development of the magneto-rotational instability. We use time-dependent one-dimensional disc models, based on a local cooling time calculation of the efficiency of transport, to study the radial structure and stability (against fragmen...
متن کاملGlobal MHD simulations of stratified and turbulent protoplanetary discs. I. Model properties
Aims. We present the results of global 3-D MHD simulations of stratified and turbulent protoplanetary disc models. The aim of this work is to develop thin disc models capable of sustaining turbulence for long run times, which can be used for on–going studies of planet formation in
متن کامل